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Abstract. Selection of a proper model as a basis for statistical inference from capture—
recapture data is critical. This is especially so when using open models in the analysis of
multiple, interrelated data sets (e.g., males and females, with 2-3 age classes, over 3-5
areas and 10-15 yr). The most general model considered for such data sets might contain
1000 survival and recapture parameters. This paper presents numerical results on three
information-theoretic methods for model selection when the data are overdispersed (i.e.,
a lack of independence so that extra-binomial variation occurs). Akaike’s information
criterion (AIC), a second-order adjustment to AIC for bias (AIC,), and a dimension-
consistent criterion (CAIC) were modified using an empirical estimate of the average
overdispersion, based on quasi-likelihood theory. Quality of model selection was evaluated
based on the Euclidian distance between standardized § and § (parameter 8 is vector valued);
this quantity (a type of residual sum of squares, hence denoted as RSS) is a combination
of squared bias and variance. Five results seem to be of general interest for these product-
multinomial models. First, when there was overdispersion the most direct estimator of the
variance inflation factor was positively biased and the relative bias increased with the
amount of overdispersion. Second, AIC and AIC,, unadjusted for overdispersion using
quasi-likelihood theory, performed poorly in selecting a model with a small RSS value
when the data were overdispersed (i.e., overfitted models were selected when compared to
the model with the minimum RRS value). Third, the information-theoretic criteria, ad-
justed for overdispersion, performed well, selected parismonious models, and had a good
balance between under- and overfitting the data. Fourth, generally, the dimension-consis-
tent criterion selected models with fewer parameters than the other criteria, had smaller
RSS values, but clearly was in error by underfitting when compared with the model with
the minimum RSS value. Fifth, even if the true model structure (but not the actual pa-
rameter values in the model) is known, that true model, when fitted to the data (by parameter
estimation) is a relatively poor basis for statistical inference when that true model includes
several, let alone many, estimated parameters that are not significantly different from 0.

Key words: AIC; Akaike; capture-recapture; Cormack—Jolly—-Seber model; extra-binomial varia-
tion; Kullback—Leibler discrepancy,; model selection; overdispersion.

INTRODUCTION

Open models based on the
Cormack-Jolly—Seber model

Pollock et al. (1990) summarize the state of the sci-
ence for the general Jolly-Seber model, which includes
time-specific parameters for population size (V,), prob-
ability of capture (p;), and number of new recruits (B,_,)
attimeifori=1,. .., kand the probability of survival
(¢,), during the interval i to i + 1. Anderson et al.
(1993) suggest some general trends in capture-recap-
ture modeling in open populations. In particular, in
recent years, interest has increasingly focused on the
Cormack-Jolly-Seber (CJS) model in recognition of

! Manuscript received 21 June 1993; revised 11 November
1993; accepted 1 December 1993.

2 The Unit is now part of the U.S. Department of Interior
National Biological Survey.

Cormack’s (1964) paper as well as the papers by Jolly
(1965) and Seber (1965). The CJS model is a product-
multinomial model incorporating only time-specific
survival (¢,) and recapture (p;) probabilities and since
the late 1980s it has seen several major extensions.
Burnham et al. (1987) generalize the CJS model to
allow analysis of multiple data sets, in particular the
cases where there are treatment vs. control group con-
trasts. Lebreton et al. (1992) extend the modeling of the
survival and recapture probabilities in the framework
of a general “analysis of variance” philosophy with an
emphasis on the analysis of multiple data sets and logit-
linear modeling of external variables. Burnham (1991,
1993) provides a major synthesis and unification and
gives the general theory for the joint analysis of cap-
ture-recapture and band recovery data (also see Seber
1982).

Closed-form parameter estimators exist for only a
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few capture-recapture models and those that do exist
are computationally intensive. Computation of test
statistics also involves a substantial amount of calcu-
lation that is quite error-prone if done by hand. Thus
computer software is essential in data analysis, es-
pecially in the case of multiple data sets. Sophisticated
software now exists but is not always easy to use. Pro-
grams RELEASE, SURGE, and SURVIV (see sum-
mary of these programs and others in Lebreton et al.
1992:86) are most relevant here.

Model selection

The primary issue in the analysis of capture-recap-
ture data is that of proper model selection (Burnham
and Anderson 1992). This is especially critical in the
analysis of multiple, interrelated data sets (e.g., males
and females each represented by 2-3 age classes). Such
a study over 10-20 yr (occasions) will also usually have
several “time effects.” As Jolly (1965) anticipated, some
of the survival (¢) or recapture (p) parameters might
also be common across age or sex classes or years, while
others must be sex- or age- or year-specific, or be a
function of external covariates. The statistical naive
approach to analysis of such data is to just fit the most
general model that includes all reasonable effects pos-
sible in the data; we define such a general model as the
‘“global model” (Burnham and Anderson 1992, Le-
breton et al. 1992).

The global model for such a single large, multifactor
data set might have on the order of 200 parameters
and the global model for such data sets over several
geographic areas might contain over 1000 parameters.
This is too many parameters to easily interpret and
usually most of the estimates of these parameters do
not represent (in analysis of variance parlance) statis-
tically significant effects in the data. For these and other
reasons, the selection of a parsimonious model is very
important in data analysis: a finite amount of data will
only “support” a certain number of parameters and a
limited model structure. Moreover, it is difficult to
conceive ofa “true model” in capture-recapture; rather
as sample size increases, more structure (“effects”) can
be identified. Shibata (1989) recommends rejection of
those models far from reality and the selection of a
model in which the error of approximation and the
error due to random fluctuations are well balanced.
Burnham and Anderson (1992) provide further dis-
cussion of these issues and a detailed capture-recapture
example in which the global model contained 46 pa-
rameters. It is worth noting here that these issues about
models, parsimony, model selection, and so forth are
common to much of empirical of experimental ecology
and data-based model selection methods discussed be-
low have far wider application than just capture-re-
capture.

Huggins (1991), Burnham and Anderson (1992), and
Lebreton et al. (1992) recommend the use of Akaike’s
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(1973, 1985) Information Criterion (AIC) as the basis
for model selection in the analysis of capture-recapture
data. Akaike reasoned that if one had an objective
discrepancy measure (similar to a metric) between any
approximating model and the true model, one should
select the approximating model for which this measure
was smallest. Moreover, there are compelling reasons
to use, as Akaike suggested, the Kullback-Leibler (K-
L) discrepancy between two distributions, as the basis
of such model selection. Denoting the true statistical
sampling distribution of the data by f(x) (“truth’’) and
the model by g(x| ) (with a known form but generally
unknown parameters, denoted by ), then the Kull-
back-Leibler discrepancy is

_ S(x)
I, o = f f(X)log[ 20 | 0)] dx.

The K-L discrepancy has its roots deep in information
theory (see, e.g., Kullback 1959) and is by no means
an arbitrary choice of metric here; essentially, I(f, g) is
a unique metric to use in the context of maximum
likelihood theory. Kapur and Kesavan (1992) provide
a current review of information-theoretic measures such
as I(f, g) (but without reference to the model selection
problem in statistical data analysis). Even if a true
(unknown) model exists, the K-L discrepancy is not
observable, nor can it be computed directly from the
sample data. Akaika found a relation between the K—
L discrepancy and an expected log-likelihood, and this
finding has allowed major practical and theoretical ad-
vances in model selection and the analysis of complex
data sets (Bozdogan 1987 provides a statistical review
of AIC).
Noting that I(f; g) can be written as

I(f g = f S)loglf(x)] dx

- ff ()log[g(x | 0)] dx,
leads to

I(f, 8) = E,{log[f(x)]} — E,{log[g(x | )]}.

The first expectation depends only on the unknown
true distribution, f(x), and is not dependent on any
approximating model, g(x | 0), and its parameters (e.g.,
Sakamoto et al. 1986:45-48). This first expectation can
be considered as an unknown (and not estimable) con-
stant. Akaike (1973, 1985) showed that, apart from
this constant term, the K-L discrepancy is equal to an
expected log-likelihood. Thus to find the model that
maximizes I(f, g) one need only maximize
E.{log[g(x | 0)]}, which is directly related to the log-
likelihood of the model g(x | §) [the likelihood £(8 | data
X) is proportional to g(x | 8)]. Akaike derived a con-
sistent estimator of E,{log[L£(d | data x)]} =
E,{log[g(x| 6]} + an unknown constant, when 8 is es-
timated by maximum likelihood estimation (MLE) (for
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more specifics see, for example, Akaike 1973, Boz-
dogan 1987, Burnham et al. 1994).

The maximized log-likelihood is a biased estimator
of this “expected log-likelihood” and the asymptotic
bias equals K, the number of free parameters in the
model (Akaike 1973). Thus, a consistent estimator of
Akaike’s expected log-likelihood is log[£@)] — K
(Akaike 1973, Bozdogan 1987), where 6 is a vector of
the model parameters (here, these are the ¢, and p; in
CJS models). Akaike then defined AIC by multiplying
through by —2 (for “historical reasons,” according to
Akaike, namely because the multiplier “2” appears as
part of all likelihood ratio tests and the “— makes
AIC almost always a positive number), hence

AIC = —2 log[£®)] + 2K.

A key point is that —log[£(8)] + K is a consistent es-
timator of the K-L discrepancy (plus an additive con-
stant that does not depend upon any aspect of the
candidate models examined) and therefore has a solid
theoretical basis. We emphasize that model selection
based on a AIC has the goal of selecting a model based
on the simple yet compelling idea of minimizing the
Kullback-Leibler discrepancy between the unknown
“true model” (i.e., truth) and the approximating data-
based model. Truth could be very complex, even hav-
ing an infinite number of parameters, thus not be a
useful model. Yet if truth were known we could, and
generally would, select a best approximating model by
minimizing the K—L metric over a suitable class of
useful models. AIC model selection allows us to find
this data-based best approximation to truth even though
truth is unknown to us. In essence, using AIC, we have
a well-defined, meaningful target to aim for in model
selection.

It is only heuristically that the first term in AIC can
be seen as a measure of lack of model fit while the
second term is a penalty for increasing the “size” of
the model. In this sense, AIC attempts to identify a
parsimonious model as a trade-off between increasing
K to achieve a good model fit (hence low bias in esti-
mated parameters) and decreasing K to minimize the
penalty for having too many parameters (hence in-
creasing precision of estimated parameters) (Burnham
and Anderson 1992 comment more on this bias-pre-
cision trade-off). AIC as computed for a number of
candidate models and the model with the lowest AIC
is selected as a basis for inference (Atkinson 1980,
Sakamoto et al. 1986). Stone (1977) shows a relation-
ship between AIC and cross validation. Hurvich and
Tsai (1989) give a small-sample (second order) bias
correction, termed AIC,, where,

_ 2K + DK +2)
AIC, = AIC + =—————-=,

and n = sample size (also see the earlier work by Sug-
iura 1978 on second-order bias adjustments in a sim-
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ilar context). AIC, has a somewhat larger penalty term
than AIC, particularly if n is small with respect to K.
This version of AIC, was derived in a time series con-
text, but was shown to be reasonable for CJS models
by Burnham et al. (1994).

A criterion for asymptotically consistent model se-
lection was developed by Schwarz (1978) and termed
BIC, for Bayesian Information Criterion. Bozdogan
(1987) presents a good review of information-theoretic
methods in model selection, including what he terms
a dimension-consistent criterion (termed CAIC for
consistent AIC), which is asymptotically the same as
BIC. In this study we investigate Bozdogan’s dimen-
sion-consistent criterion. Hence we use

CAIC = —2 log[£(®)] + KTlog(n) + 1],

(see also Shibata 1976). This model selection criterion
is useful when a true model exists that has a finite, in
fact small, order (K) that does not increase with sample
size. This CAIC criterion does not enjoy the theoretical
link with the K-L discrepancy, rather it provides an
alternative penalty, derived from a Bayesian view-
point, such that the dimension (order) of the true model
is consistently estimated as n — co. Thus, AIC (and
AIC,) relates to finite samples and is an estimate of the
K-L discrepancy (except for a constant that is unrelated
to the data).

As sample size increases, AIC will select increasingly
more complex models. The underlying idea is that more
data generally does contain more structure, hence mer-
its a more complex model (to collect more data one
either must include more areas, species, times, etc., or
get increased sample sizes on factors such as age, con-
dition, etc., of animals). In contrast, CAIC focuses on
a penalty term that is chosen to allow an asymptotically
consistent estimator of the true model dimension (as-
suming K is fixed as n — 00). CAIC has a larger penalty
term and, thus, selects models with the same or fewer
parameters than AIC and AIC,.

If one takes the K-L discrepancy as the logical start-
ing point it is, then AIC and AIC, have a deep level of
theoretical support. CAIC is popular in the literature,
but its foundation and even objective is disputed (see,
e.g., Akaike 1981, Bozdogan 1987). The need for as-
ymptotic dimension consistency seems less supported,
especially when no true, low-dimensional model is likely
to exist. Perhaps such a true model exists in some of
the physical sciences. In field biology, as sample size
increases the number of factors possible in the model
also increases, hence, more model structure is revealed
and increasing numbers of parameters are required.
Thus, CAIC seems inappropriate a priori for many
biological modeling issues.

Burnham et al. (1994) evaluate the adequacy of the
first- and second-order bias terms for use in estimating
the K-L discrepancy, based on the maximized log-
likelihood. They found these bias terms to be adequate
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over a wide range of sample sizes, number of sampling
occasions, and parameter values. These results paved
the way for increased evaluation of K-L-based meth-
ods in model selection among candidate capture-re-
capture models.

Burnham et al. (in press) compared the use of AIC,
AIC,, and CAIC with the use of likelihood ratio tests,
under four different « values, in a nested sequence of
treatment-control models of the CJS type. Their com-
parison focused not only on the ability to select the
“true model,” but more on the quality of the resulting
inference as measured by a type of expected residual
sum of squares (RSS). Let 6 be the vector of model
parameters (i.e., the ¢, and p;) under the global (i.e.,
most general) model; any model fit represents some
smoothing restriction on the estimators of 0 = (@,, . . . ,
6;). Then,

G
RSS = X (8, — 6)/0,)

=1
measures both bias and sampling variation in 8. The
objective of Burnham et al. (in press) was to identify
the model selection strategy that picks models with a
small RSS. It was shown that AIC, AIC,, and CAIC
consistently outperformed the hypothesis-testing ap-
proach in selecting models with the low RSS values.
Furthermore, AIC and AIC, tended to achieve a bal-
ance between a model with too few vs. too many pa-
rameters (see Shibata 1989). Surprisingly, CAIC per-
formed well, often selecting models with a lower RSS
than those selected by AIC and AIC,. Although the
data were simulated from models with a small, fixed
K, the CAIC-selected models provided poor estimates
of the dimension of the true model (Burnham et al.,
in press).

Overdispersion

Akaike (1973) considers his information-theoretic-
based method to be a generalization of Fisher’s like-
lihood theory (which is fundamental to most of statis-
tical theory). More recently, Kapur and Kesavan (1992)
also consider likelihood theory to be a special case of
information theory. While our evaluation of the in-
formation-theoretic methods in model selection in the
product-multinomial models in capture-recapture is
encouraging (Burnham et al. 1994, in press), real cap-
ture-recapture data often seem to be overdispersed.
The CJS model and its many extensions assume only
binomial variation; however, our experience suggests
that frequently capture-recapture data are overdis-
persed. Count data have a long history of not conform-
ing to simple variance assumptions (e.g., Bartlett 1936,
Fisher 1949, Armitage 1957, Finney 1971).

The reasons for overdispersion or “extra-binomial
variation” are many in biological populations (Eber-
hardt 1978). The focus here is on a lack of indepen-
dence in the data. Banded Canada Geese (Branta spp.)
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frequently mate for life and the pair behaves almost
as an individual, rather than as two independent “tri-
als.” The young of some species continue to live with
the parents for a period of time, which also can cause
a lack of independence. Further reasons for overdis-
persion in biological systems include species whose
members exist in schools or flocks. Members of such
populations can be expected to have positive correla-
tions among individuals; such dependence causes ov-
erdispersion. The effect of overdispersion is to cause
the variances to be underestimated. An alternative rea-
son for overdispersion, not addressed here, is that pa-
rameter heterogeneity in the survival or capture prob-
abilities, or in both, may cause overdispersion.

The estimators of model parameters often remain
unbiased in the presence of overdispersion, but the
model-based, theoretical variances are underestimated
(McCullagh and Nelder 1989). To properly cope with
overdispersion one needs to model the overdispersion
and then use generalized likelihood inference methods.
Quasi-likelihood theory (Wedderburn 1974) provides
such a means to handle the analysis of overdispersed
data (also see Williams 1982, McCullagh and Pregibon
1985, Moore 1987, McCullagh and Nelder 1989).

In general, if the random variable m represents count
data under some simple distribution (e.g., Poisson or
binomial) the expectation, (), and the variance, ¢2(),
are known functions of the unknown parameter 6. In
an overdispersion model the expectation of m is not
changed, but the variance model must be generalized,
such as by a multiplicative factor, v(f), hence var(m)
= v(0)s*(#). The form of the factor v(f) can be partly
determined by theoretical considerations and can be
complex (see, e.g., McCullagh and Nelder 1989). For
CJS models, and in general, the data constitute many
interrelated counts, m, (captures and recaptures, by
cohorts) so there are (conceptually) many different ov-
erdispersion factors to be modeled: v,. This is a daunt-
ing task; however, there overdispersion factors typi-
cally are small, ranging from just above one to two or
three, if the model structure is correct and overdis-
persion is due to small violations of assumptions such
as independence and parameter homogeneity over in-
dividuals. Hence, a first approximation for dealing with
overdispersion is to use a constant ¢ (conceptually ¢ =
%) in place of each v,. Burnham et al. (1987:243-246)
and Lebreton et al. (1992:106-107) discuss the esti-
mation of empirical variances and covariances in cap-
ture-recapture models using a constant ¢ and quasi-
likelihood methods.

Cox and Snell (1989) discuss modeling of overdis-
persed variances for count data and note that the first
useful approximation is based on a single variance in-
flation factor (c), which can be estimated from the stan-
dard goodness-of-fit chi-square statistic (x2) and its de-
grees of freedom for count data, hence

¢ = x¥df
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(x* here is the usual [0 — EJ?/E statistic summed over
the Observed count data based on a fitted model giving
the Expected counts). Furthermore, Cox and Snell
(1989) assert that this simple approach should often
be adequate, as opposed to the much more arduous
task of seeking a model for the v,. In a study of these
competing approaches on five data sets, Liang and
McCullagh (1993) found that modeling overdispersion
was clearly better than use of a single ¢ in only one of
five cases examined. Future research on overdispersion
in CJS models may try the difficult task of modeling
the overdispersion (separately for each multinomial
cohort); however, in these initial studies we are using
the simplest approach, a single variance inflation fac-
tor.

Given ¢ empirical estimates of sampling variances
[var,(8,)] and covariances [cov,(8,, 8] can be computed
by multiplying the theoretical (model-based) variances
and covariances by ¢ (a technique that has long been
used, see, e.g. Finney 1971). These empirical measures
of variation [i.e., ¢-var,(8,)] must be treated as having
the degrees of freedom used to compute ¢ for purposes
of setting confidence limits or testing hypotheses (Fin-
ney 1971).

Under the CJS model theory, ¢ = 1, however, with
real data we expect ¢ > 1, but we do not expect ¢ to
exceed ~4 (see Eberhardt 1978). Substantially larger
values of ¢ (say, 6-10) are usually caused partly by a
model structure that is inadequate, that is the fitted
model does not actually represent all the explainable
variation in the data. Quasi-likelihood methods of
variance inflation are appropriate only after the struc-
tural adequacy of the model has been achieved (Burn-
ham et al. 1987:243-254). Lebreton et al. (1992) dis-
cuss at length strategies for analysis of CJS capture—
recapture data so as to determine an adequate struc-
tural model (but with ¢ = 1 assumed). The issue of the
model’s structural adequacy is at the very heart of good
data analysis (i.e., the reliable identification of the
structure vs. residual variation in the data) so we do
not herein attempt a discussion of this matter.

Objectives

The first objective is to evaluate the estimation of a
single variance inflation factor based on quasi-likeli-
hood methods from overdispersed capture-recapture
data. Secondly, we examine model selection using in-
formation-theoretic methods in the presence of over-
dispersion and, finally, determine if a quasi-likelihood
adjustment to the information-theoretic approaches
improves their performance with overdispersed data.

METHODS

Capture-recapture model and
simulated data

Burnham et al. (1987) present a series of nested CJS-
type models for the analysis of treatment-control ex-
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periments involving marked animals captured over k
occasions. This series starts with model H, (no treat-
ment effect, survival and capture parameters in both
groups are equal) and ends with model H,_, , in which
all the survival and recapture probabilities are affected
by the treatment and all parameters differ between the
two groups. This sequence of nested models is denoted
asH, H, H,, H,,, H,,, H,,, ..., H_,,. We assume
the reader is familiar with this material. Monte Carlo
data were generated using program RELEASE. (Burn-
ham et al. 1987) under models H,, H,,, H,,, and H,,.
SAS (SAS 1985) was used for the analysis of the results
from program RELEASE.

Model H, is a CJS model for two (as used here)
groups of marked animals, but there is no treatment
effect on survival or recapture probabilities, thus all
parameters are equal between the groups (a null model).
Parameters and sampling effort constants used in Mon-
te Carlo simulations of the 81 cases (34) were ¢ = {0.5,
0.7, and 0.9}, p = {0.4, 0.6 and 0.8}, # (the number of
unmarked animals caught, marked, and released on
each occasion) = {50, 100, and 300}, and k = {5, 10,
and 20}. In each repetition, the,$, p, and u were con-
stant over the k sampling occasions. The basic design
and parameter values were chosen to be similar to
those used by Burnham et al. (in press) in the no ov-
erdispersion case.

Model H,, is here a CJS model for each of two groups,
a treatment and a control group, denoted by subscripts
tand ¢, respectively. The treatment is assumed to affect
the first survival probability (¢,, vs. ¢.,) and the first
recapture probability (p,, vs. p.,), while the remaining
parameters (¢,, @3, ..., ¢p_; and ps, p4, ..., p,) are
the same for the two groups. Data under model H,,
were simulated as under model H, but with the fol-
lowing relationships among parameters: ¢,, = ¢, —
0.15 and p, = p, — 0.15. The treatment effects on ¢,
and p, are relatively moderate and acute. One might
expect that a parsimonious model for real data could
identify a treatment effect on ¢, but perhaps fail to
identify a treatment effect on p, (i.e., the selected model
would correspond to concluding the treatment effect
does not extend beyond ¢, ); still the statistical inference
that is supported by the data might be quite useful
(while not achieving full reality).

Model H,, is here a CJS model for a treatment and
control group, in which the treatment is assumed to
have chronic effects on ¢,,, ¢,,, ¢,5, and p,,, and p,; while
the remaining parameters (¢, ¢s, . . . , ¢x_, and p,, ps,

., Di) are the same for both groups. Data under
model H,, were simulated as with model H, but with
the following relationships among parameters: ¢,, = ¢,
- 0.15, ¢, = ¢, — 0.15/2, ¢ = ¢5 — 0.15/4, and p,,
=p, — 0.15, p, = p, — 0.15/2. Here a parsimonious
model for real data might be substantially different
from the “true” model, especially when sample size is
small.

Model H,, was investigated less intensely using the
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values for ¢, p, and u as in model H,, but only for k
= 10. Thus, there were 27 cases (3%) and dampened
chronic treatment effects were simulated using the fol-
lowing relationships: ¢, = ¢, — (0.1)(0.8)~! for i = 1,
..., 9and p,=p, — (0.1)(0.8)2fori=2,...,9

Sample size is n = ;! R, where R, is the total
number of animals released at occasion #; in the un-
derlying multinomial models, these R,’s are the sample
sizes of each released cohort. When there are no losses
on capture, R, is the sum of the newly marked animals
released on occasion i, u;, and animals recaptured and
rereleased on occasion i (Burnham et al. 1994). The u,
are taken here as given, rather than being generated as
random variables because the population dynamics
process that produces the u; (and hence their partially
stochastic nature) is irrelevant to our purposes. We
assume no losses on capture in the simulations. We
believe these models and parameters generally reflect
many biological situations that occur in practice, at
least for vertebrate species sampled (and reproducing)
on an annual basis.

We do not feel that our results are tightly linked to
this specific sequence of models. In particular, our re-
sults are not specific to models of a treatment effect on
the parameters. Rather, these models were chosen be-
cause they are a nested sequence and they have closed-
form parameter estimators, thus providing a conve-
nient basis for exploring model selection issues in cap-
ture-recapture data analysis. (Closed-form MLEs are
important because if numerical methods were required
there would be a 5-10 fold increase in computing time).

Monte Carlo study

We generated 1000 repetitions for each of the 81
basic cases, that is, four factors (i, k, p, and ¢) each at
three levels (hence this aspect of the design is a 34
factorial), for each of three true models (H,, H,,, H;,)
(thus overall we have a 3 factorial design). Data were
generated at two levels of overdispersion (¢ = 2 and 4)
and a null case with no overdispersion (¢ = 1), thus a
total of 729 cases (3¢ factorial) were simulated, each
with 1000 repetitions. The models allow ¢; and p, to
vary by occasion (i), but we used, with no loss of gen-
erality, ¢, = ¢ and p, = p.

A modified version of Program RELEASE (Burn-
ham et al. 1987) was used to generate the simulated
CJS data. Given an “animal” is marked and released
on occasion i, its subsequent capture history (next k —
i occasions) is produced by generating a series of in-
dependent Bernoulli events: did the animal survive the
next time interval (probability = ¢,), if not, all re-
maining capture events are set to 0; if it survived, was
it caught (probability = p,, ), if yes, capture event is
set at 1 for occasion i + 1; then the animal is released
and the process is repeated for occasion i + 2.

The generated data are stored (represented) as a cap-
ture history matrix, X (Burnham et al. 1987:28-33).
Each row (i) of this matrix corresponds to a marked
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individual and columns (j) in this matrix correspond
to sampling occasions. If the individual is captured at
occasion j, then a 1 is recorded in the j* column, oth-
erwise a 0 denotes that the individual was not captured
on occasion j. To generate overdispersed data (i.e., ¢
= 2 or 4) such that E(n) is the same as that where there
is no overdispersion (¢ = 1), the %, (number of animals
first captured at time i) were set to u,/c, and the X
matrix was generated on this basis but then “cloned”
¢ times. By cloned we mean each generated capture
history was present ¢ times in the final X matrix used
in the data analysis.

A minor complication is that when ¢ = 4 and u, =
50, the ratio u,/c is not an integer. Then, this ratio was
randomly rounded to either 12 or 13 for each repeti-
tion, hence, the expectation for the number of new
releases was still 12.5.

This procedure produced Monte Carlo generated data
where the overdispersion parameter was known the-
oretically to be ¢ for the specific values of y; (i.e., we
simulated data this way because we then would know
the true value of ¢). The simulated data can be further
summarized in a compact (compared to the X matrix)
array m,, where m; is the number of animals first cap-
tured at occasion j from releases at occasion i. Rows
in the m,; matrix are then multinomial-distributed ran-
dom variables (Burnham et al. 1987:45-47).

Quasi-likelihood corrections

Quasi-likelihood estimates of the variance inflation
factor (c) are computed from the full goodness-of-fit
test for the CJS model for each group. Here, two groups
are used, corresponding to a treatment and control
group. The theory and notation for these tests are non-
trivial and are not given here (see Burnham et al. 1987:
64-77, 174-177). The full goodness-of-fit test is the
sum of two components (i.e., TEST2 + TEST3). The
degrees of freedom is the sum of the degrees of freedom
for the two test components. Substantial pooling of the
data is required to avoid small expectations (e.g., to
avoid expectations <2). While such pooling is some-
what arbitrary, program RELEASE accomplishes a
reasonable pooling algorithm to obtain a test statistic
that is asymptotically chi-square-distributed with ap-
propriate degrees of freedom. The Monte Carlo data
that were generated to achieve overdispersion can be
represented as cm;, where these hypothetical m; fit the
CJS model with no overdispersion. Thus, conceptually,
the terms in the goodness-of-fit test are (Observed data
are the m,)

[em,; — CE(mij)]z/ CE(mij)s
= c}[my; — E(m,)/cE(m,),
= c[m; — E(m,)P/E(m,).

This is merely ¢ times the usual chi-squared terms in
the goodness-of-fit test. The sum of these terms is thus
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¢ times an asymptotically central x2-distributed vari-
able under the null hypothesis. Then, E(x?) = ¢(df) and
E(x*/df) = ¢, except that pooling makes this only an
approximation. Finally, ¢ = x?/df, the simulation re-
sults allow this estimator to be evaluated regarding its
bias and precision.

Quasi-likelihood theory suggests simple modifica-
tions to AIC, AIC,, and CAIC (Lebreton et al. 1992:
106-107); we denote these modifications as

QAIC = —{2 log(£(6)/¢} + 2K,

2K + 1)K + 2)

QAIC. = QAIC + =———2~—-=,

and
QCAIC = —{2 log[L£(®))/¢} + K[log(n) + 1].

If no overdispersion exists, then —2 log[£(9)] is a mea-
sure of lack of fit. However, in the presence of over-
dispersion, this quantity exaggerates the lack of fit and
thus a modification is needed to better enforce param-
eter parsimony.

RSS metric

Quality of inference was measured by the expected
residual sum of squares [E(RSS)] of parameter esti-
mates about the true parameter values, for a given
model selection method, over 1000 Monte Carlo rep-
etitions:

e 3(E 5 3o

v i=1 d’vi i=2 p vi

ka_ﬂvk ’
+( B )]

(the parameter estimates vary by replicate, but the no-
tation used here is not elaborated to show that varia-
tion) where v = {c, t}, for control and treatment and
B, is the product ¢,_,p,; only B3, is identifiable here. For
each selection method, the RSS value is computed for
the selected model, then these 1000 values are averaged
to give

1000
> RSS,,
. et
E(RSS) T
This (estimated) expected RSS is computed for the
AIC-, AIC,-, and CAIC-selected models and denoted
AICRSS, AIC,RSS and CAICRSS, respectively. Like-
wise, E(RSS) is computed for models selected using the
quasi-likelihood corrections (QAIC, QAIC,, and
QCAIC) and denoted QAICRSS, QAIC.RSS, and
QCAICRSS, respectively. If data are generated under
a particular model and analyzed under this same (true)
model for all 1000 repetitions, then its E(RSS) is called
TRUERSS.
Finally, during the analysis of each specific Monte
Carlo repetition for each of the 729 cases, all models
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in the set [Hy, H,,, H,,, . .., and H,_,,} are fitted to
the data (via MLE) and the RSS is computed for each
of these fitted models. The model with the lowest RSS
is determined and the E(RSS) of this selection proce-
dure is denoted MINRSS. This model selection pro-
cedure represents the best possible selection outcome
(under the RSS metric) in the entire set of models (not
just the three models from which data were generated).
Many comparisons are made using MINRSS as the
standard, rather than TRUERSS from the true model
(e.g., Figs. 1 and 2).

The numerical evaluation of 1000 repetitions of each
of the 729 cases took ~ 14 d of CPU (Central Processing
Unit) time on Sun SPARC Model IPX running UNIX
at Colorado State University. This large effort was nec-
essary to meet the objectives over a broad range of
parameter values, sample sizes, sampling occasions,
and underlying models for overdispersed capture—re-
capture data, at least for open models of the CJS type.

REesuLTs

The patterns in the results were generally similar
across, at least, the four basic factors (¢, p, u, and k),
thus the material in Table 1 and Figs. 1 and 2 is pooled
over these 81 cases. When patterns differed by true
model (H,, H,,, or H,,), we present the results parti-
tioned by these models. The results presented are al-
ways partitioned by the dispersion parameter (¢ = 1,
2, and 4).

Bias in ¢

Before turning to the central issue of model selection,
it is of interest to evaluate the estimation of ¢ using
quasi-likelihood methods. Clearly, ¢ is positively bi-
ased: E(¢) = 1.057 + 0.002 (mean =+ 1 SE), 2.210 +
0.006, and 4.689 + 0.020 for ¢ = 1, 2, and 4, respec-
tively. The relative bias increases with ¢ (6, 10, and
17% for ¢ = 1, 2, and 4, respectively). These values are
based on all 243 cases, but there was only minor vari-
ation in E(¢) across ¢, p, u, and k. In general, the bias
in ¢ decreases as (1) ¢ increases, (2) p increases, and
(3) u increases, but these decreases are generally small
(<10%). Bias in ¢ is unaffected by changes in k. Pooling
of the data to compute the goodness-of-fit x2 test sta-
tistic may be a partial cause of the positive bias in é.
If no overdispersion was present (i.e., ¢ = 1) in the data
but one used a quasi-likelihood adjustment when it
was, indeed, not needed (i.e., ¢ ~ 1), then this practice
seems to have little effect on model selection (Table 1,
compare the two columns under ¢ = 1).

Model selection using uncorrected criteria

If no correction for overdispersion is made then AIC
and AIC, tend to select overfitted (i.e., K > K) models
and to select models with large RSS values when the
data are overdispersed (Table 1, Fig. 1). If no over-
dispersion exists, these methods often select models
with RSS near the best possible (MINRSS); however,
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TABLE 1. Summary average of RSS (residual sum of squares) values for models H,, H,,, and H,, for capture-recapture data
generated with overdispersion. Uncorrected (AIC, AIC, and CAIC) and corrected (QAIC, QAIC,, and QCAIC) are to be
compared with the model with the minimum RSS, (MINRSS) for each repetition and the RSS under the true model

(TRUERSS). cv = 0.6% for all the table entries.

c=1 c=2 c=4
Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected
Model H, 81 cases
MINRSS 0.757 0.757 1.005 1.005 1.555 1.555
AIC 0.796 0.795 1.397 1.078 2.974 1.723
AIC, 0.793 0.791 1.343 1.070 2.822 1.704
CAIC 0.762 0.762 1.022 1.013 1.772 1.589
TRUERSS 0.761 0.761 1.011 1.011 1.588 1.588
Model H,, 81 cases
MINRSS 0.799 0.799 1.083 1.083 1.670 1.697
AIC 0.877 0.874 1.545 1.220 3.245 1.965
AIC, 0.874 0.871 1.485 1.212 3.108 1.953
CAIC 0.870 0.870 1.171 1.166 2.035 1.812
TRUERSS 0.844 0.844 1.192 1.192 1.975 1.975
Model H,, 81 cases
MINRSS 0.828 0.828 1.131 1.131 1.788 1.788
AIC 0.935 0.932 1.679 1.333 3.542 2.143
AIC, 0.931 0.927 1.618 1.321 3.385 2.113
CAIC 0.911 0.911 1.246 1.226 2.231 1.911
TRUERSS 0.937 0.937 1.430 1.430 2.542 2.542
All models 243 cases
MINRSS 0.795 0.795 1.073 1.073 1.680 1.680
AIC 0.870 0.867 1.540 1.210 3.254 1.944
AIC, 0.866 0.863 1.482 1.200 3.105 1.923
CAIC 0.847 0.847 1.146 1.135 2.013 1.771
TRUERSS 0.847 0.847 1.211 1.211 2.035 2.035

the presence of overdispersion in the data severely
weakens the ability of these uncorrected methods to
select a proper parsimonious model. The increase in
RSS for ¢ = 4 is striking (Table 1, compare Ist two
columns) and clearly some correction to these model
selection criteria is needed to cope with overdispersed
data. In addition, these uncorrected methods select the
best model (i.e., that model producing the MINRSS)
relatively infrequently with overdispersed data (Fig. 1,
top). These factors cause the average RSS to be large
as the models selected are not appropriately parsi-
monious. CAIC performs well with overdispersed data
and selects models with relatively small RSS values.
The large penalty term in CAIC results in the selection
of more simple models (K < K) than the MINRSS
model (Fig. 1) and a good balance is achieved between
underfitting and overfitting models in the presence of
overdispersion.

Model selection using corrected criteria

Quasi-likelihood corrections (QAIC and QAIC,) al-
low improved model selection and lower RSS values
with overdispersed capture-recapture data (Table 1).
As expected, QAIC and QAIC, are similar in perfor-
mance. In general, QCAIC selects models with the low-
est RSS (Table 1). Except for the null model (model
H,), QAIC, QAIC,, and QCAIC tend to select models
with a smaller RSS than if one knew, and used, the
true model.

The quasi-likelihood corrected criteria QAIC and
QAIC. not only select MINRSS models frequently with
overdispersed data, but the models selected tend to
have Shibata’s (1989) balance between underfitting (K
< K) and overfitting (K > K) models (Fig. 1). This
balance in errors in selecting a parsimonious model is
further illustrated in Fig. 2 for data generated under
models H,, H,,, and H,,. Here, the MINRSS model is
frequently selected using QAIC or QAIC,. In contrast,
the use of QCAIC selects models with too few param-
eters compared to the MINRSS model and little bal-
ance in under and overfitting errors is achieved. Still,
the RSS from QCAIC-selected models is less than for
those selected by QAIC or QAIC, (Table 1).

The general pattern in the above results carries over
when data analyses are partitioned by ¢ (0.5, 0.7, 0.9),
p(0.4,0.6,0.8), u (50, 100, 300), k£ (5, 10, 20), or model
(H,, H,,, H,,). Factorial ANOVA was performed on
the 243 cases using ¢, p, u, k, and the true model as
factors. The response variable was the RSS for a spe-
cific corrected criterion minus the MINRSS. This anal-
ysis attempts to answer the question, “what factors are
associated with a difference between the model selected
vs. the best model (i.e., MINRSS)?”” Nearly every factor
and interaction term was “significant” due to the large
sample sizes (1000 replicates), thus the magnitude of
the F values was used to rank the most important
factors. Few patterns were evident when using the cor-
rected criteria. QAICRSS-MINRSS was always influ-
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Corrected Criteria

Relative frequency of models selected by uncorrected and corrected information-theoretic criteria compared to

the MINRSS model. Histograms at the left are for mild overdispersion (¢ = 2), while the figures to the right are for more
severe overdispersion (¢ = 4). Categories shown as “Too Simple” are underfit models (K < K), while “Too Complex” are

overfit models (K > K) when compared to the MINRSS model.

enced by ¢, p, and u (in that order), but true model
and interactions such as ¢ xp and ¢ x u appeared oc-
casionally. Similar factors and interactions affected
QCAICRSS-MINRSS, but even less pattern was re-
vealed here.

It seems clear that in the analysis of overdispersed
data, factors such as ¢, p, 4, and true model will often
influence the degree to which these corrected criteria

will achieve the selection of the best (MINRSS) model.
At a larger perspective, QAIC and QAIC, do well in
model selection with overdispersed capture-recapture
data, while the uncorrected criteria do poorly. A com-
plete understanding of the relative merits of QAIC and
QAIC, vs. QCAIC remain unknown. QAIC and QAIC,
achieve a balance between under- and overfitting, at
the expense of a higher RSS when compared to QCAIC.

—

Fic. 2. Relative frequencies of models selected by uncorrected (left) and corrected (right) information-theoretic criteria
compared to the MINRSS model for fairly severe overdispersion (¢ = 4). Information for models H,, H,,, and H,, is shown.
Categories shown as “Too Simple” are underfit models (K < K), while “Too Complex” are overfit models (K > K) when

compared to the MINRSS model.
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At some point it will be necessary to investigate con-
fidence interval coverage for models selected under
these differing criteria. In some cases QAIC and QAIC,
select the MINRSS model relatively frequently (Figs.
1 and 2).

Model H,,

The results for model H,, are of interest because this
model represents the case where there are many small
treatment effects in addition to some larger effects. As
sample size increases, one might expect to detect more
of these minor effects. The results for model H,, with
c=1, 2, or 4 show that QAIC and QAIC, perform well
over the range of ¢, p, k, and u studied. These two
criteria select a parsimonious fitted model with fewer
(estimated) parameters than the true model and main-
tain a balance between under- and overfitting models
when compared to the MINRSS model. Generally,
QCAIC selected models with substantially fewer pa-
rameters and had smaller RSS values than did QAIC
and QAIC, but, curiously, at ¢ = 0.9 of u = 300 (i.e.,
large sample sizes) QCAIC performed poorly, produc-
ing large RSS values compared to QAIC and QAIC,,
and much larger RSS values than the MINRSS model.

Averaging over ¢, p, and u, the RSS values for the
true model (TRUERSS = 0.615, 1.394, and 3.267 for
¢ =1, 2, and 4, respectively) were substantially larger
than the RSS values for QAIC (0.465,0.895, and 1.759
for ¢ = 1, 2, and 4, respectively), QAIC, (0.459, 0.879,
and 1.737 for ¢ = 1, 2, and 4, respectively) or QCAIC
(0.389, 0.689, and 1.415 for ¢ = 1, 2, and 4, respec-
tively) selected models. This illustrates the advantages
of a proper parsimonious model in data analysis (i.e.,
model fitting via parameter estimation) when the true
model has many “effects” that are near zero.

DiscussioN
General

The motivation behind this paper is the issue of
model selection in open model capture-recapture (CJS
models) when there is overdispersion, relative to the-
ory, in the data. Such overdispersion is a common
occurrence. Before discussing specifics, however, there
is a more general message we wish to convey: data-
based model selection must be done in an objective
manner. Model selection may be viewed as answering
the question “how complex a model will the data sup-
port?” Essentially, the more data one has, the bigger
the model may be and the selection of model “‘size”
represents a trade-off of precision vs. bias in parameter
estimation to achieve parsimony (see Sakamoto et al.
1986, Lehmann 1990, Burnham and Anderson 1992).
These concepts have a long history in statistics (Linhart
and Zucchini 1986, Lehmann 1990).

A key principle (essentially, this is parsimony) mo-
tivating model selection is that even if the true model
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structure is known, but parameters must be estimated
from the data, use of the true model structure is likely
to provide a relatively poor basis for statistical infer-
ence when compared to models selected by the infor-
mation criteria. This result is particularly true and im-
portant when sample size is relatively small or when
there are many relatively small effects (that must be
estimated) in the true model.

Theory for statistical point estimation, confidence
intervals, and hypothesis testing is well developed and
accepted. It is as yet virtually unknown outside of the
statistical discipline that there is sound theory for mod-
el selection when multiple alternative models (es-
pecially if they are all special cases of a global model)
are fit to the same data. In particular, there is infor-
mation theory based model selection (AIC), which has
a deep foundation and may be considered as an exten-
sion of likelihood theory. The theory for AIC model
selection dates back to only 1973 (Akaike 1973) and
actual usage is only now starting to be widespread.
Intensive investigations of performance and properties
of AIC in ecological usage are in their infancy. Inves-
tigation of AIC model selection modified for overdis-
persion with multinomial count data is an unexplored
subject.

We are aware that there is resistance to the idea of
data-based model selection. Seventy years ago there
was resistance to maximum likelihood fitting of a single
model. Eventually it came to be accepted that analysis
of one’s data should consist of fitting (i.e., estimating
the parameters of) a single model to the data by some
well-defined optimality criterion (often maximum like-
lihood). Model “specification” (i.e., what model to use
if there were options) was ignored (Lehmann 1990,
Akaike 1994); one was just supposed to know the cor-
rect (hence “true” or “best””) model to use. Initially in
statistics the analysis paradigm of using only one model
was promoted and was popular with users, because
computing resources were very limited, often being
confined to hand calculation with simple formulae.
Given such a paradigm and no computers, there was
little motivation to consider fitting many models, any
or all of which required intense numerical calculations.
Hence, there was no real motivation to extend theory
to model selection as part of the data analysis. Statis-
tical theory has been so extended in the past 20 yr (with
more to come, we expect) and given the ubiquity of
computers, computational difficulties are no longer an
excuse to fit only a single, assumed-true model.

Resistance to the idea of model selection also exists
when the only selection methods of which researchers
are aware are poor. In particular, methods based on
hypothesis testing, such as stepwise variable selection
in regression, have terrible performance (Flack and
Chang 1987). It is not the concept of model selection
that is flawed but the selection methodologies: they
have often been ad hoc, sometimes in the (inappro-
priate) spirit of “data mining.” Not much better has
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been the casting of model selection as an hypothesis
testing problem with its inherent weaknesses: arbitrary
choice of « level, need for nested models, asymmetry
of null vs. alternative hypotheses, and the problems of
making multiple tests, especially if the number of tests
made is random.

Proper model selection must start with an objective
criterion to be achieved, and then model selection be-
comes a problem in optimization. Viewed this way,
model selection is just like parameter point estimation
(as for example by maximum likelihood or least
squares), a matter of optimizing a suitable objective
function. Information theory provides an objective
function; AIC implements the selection. There also
needs to be a recognition that there is uncertainty in
the selected ““best” model, just as there is uncertainty
in a point estimator. AIC-based model selection also
has the potential to provide a measure of this model
selection uncertainty (Kishino et al. 1991) in the spirit
of confidence intervals.

We maintain that in complicated studies, such as
long-term multiple capture-recapture data sets, it is a
contradiction to think there is a true model (cf. Burn-
ham and Anderson 1992:28); a model is a simplifi-
cation of reality, hence will not reflect all the “truth”
underlying a data set. Fundamental to this issue of
model selection is that the size of the data set affects
the “size” of the model (i.e., the number of parameters,
of “effects”) that should be used to represent the in-
formation in that data. Only through objective model
selection can we let the data tell us what size of a model
those data will support (Lehmann 1990; see also Burn-
ham and Anderson 1992, Lebreton et al. 1992 and
references therein).

Specific

The investigation of overdispersion here deals only
with the lack of independence and not with parameter
heterogeneity, although both statistical dependence and
heterogeneity are probably common in the analysis of
real capture-recapture data. The statistical sampling
distribution used here for the CJS data is that of k —
1 independent multinomials for each data subset (this
is the commonly used approach for CJS data, see Le-
breton et al. 1992). The representation of overdisper-
sion as just ¢ times the theoretical sampling variance
of each multinomial in the model is the simplest pos-
sible approach. However, any more general approach
gets quickly much more complicated, for example, see
O’Hara Hines and Lawless (1993) concerning overdis-
persion in multinomial distributions. There are a va-
riety of models for the generalized multinomial vari-
ance—covariance matrix; different models correspond
to different causes of overdispersion.

While it would be interesting to know the likely caus-
es of overdispersion, the form of the model used may
not matter much as regards getting a single estimated
average overdispersion, ¢, to use in modified AIC-based
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model selection. In a treatise on analysis of count data,
Cox and Snell (1989) assert that the simple approach,
such as we have studied here, should often be adequate,
as opposed to the much more arduous task of seeking
an explanatory model for the overdispersion. This
comment of Cox and Snell is supported by the results
of Liang and McCullagh (1993), who found that causal
modeling of overdispersion was clearly better than use
of a single overdispersion parameter, c, in only one of
five cases examined.

The magnitude of the overdispersion as measured
by c is relevant to this issue. The intent of fitting a
model is to interpret the structural variation (patterns)
in the data (McCullagh and Nelder 1989). In CJS mod-
els we have good reason to think the theoretical mul-
tinomial models have dispersion structure that is ap-
proximately correct, but a perfect match of theory and
reality is too much to ask. Once one has found an
adequate model structure, overdispersion, ¢, seems of-
ten to be just above one to as much as three. Sophis-
ticated modeling of overdispersion may well be un-
necessary at these low levels of c¢. Conversely, if ¢ is as
big as 10 (and perhaps if it is as much as 5), or more,
it is our opinion that important structural variation
remains to be extracted from the data (i.e., the model
selected is not structurally adequate). Our opinion on
this matter is based on experience in capture-recapture
and other areas (e.g., Eberhardt 1978, Burnham et al.
1980, Buckland et al. 1993).

Our first result was that the variance inflation factor
¢ can be fairly well estimated using quasi-likelihood
methods. The estimator ¢ has a positive bias and the
relative bias increases with the degree of overdisper-
sion. If ¢ is much above 1 it may be recommended that
empirical variances and covariances be computed as ¢
times the theoretical (i.e., model-based) variance and
covariance estimates. Confidence intervals should be
based on these inflated standard errors and the degrees
of freedom must relate to the degrees of freedom as-
sociated with the estimation of c.

The most important results of this study about mod-
el selection for open capture-recapture models are (1)
if there is overdispersion then unmodified AIC-based
model selection performs very poorly. However, (2)
simple corrections to AIC, AIC,, and CAIC made based
on quasi-likelihood principles are relatively effective
in selecting a parsimonious model for the analysis of,
and inference to, overdispersed data. These criteria are
simple to compute and we recommend their use in the
analysis of capture-recapture data. Because of the strong
similarity between open capture-recapture models and
band recovery models (Brownie et al. 1985), we suggest
that these results are likely to apply in the analysis of
band recovery data.

Further research might allow a less biased estimator
of ¢ to be derived. More important, perhaps, is that
additional research might be done to evaluate the rel-
ative merits of QAIC and QAIC, vs. QCAIC. However,
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because of the major conceptual difference in the ob-
jective underlying AIC and CAIC (and hence QAIC
vs. QCAIC) we do not recommend CAIC (the use of
which assumes a fixed true model independent of sam-
ple size). In contrast, AIC usage assumes that it is jus-
tified to estimate more parameters as sample size in-
creases.

A very important subject for further research is the
bias in standard errors and confidence interval cov-
erage of the parameter estimators of the selected model.
The usual procedure is to use the theoretical standard
errors from the model selected and adjust these stan-
dard errors for overdispersion; this is sound as far as
it goes. However, no adjustment is made for the un-
certainty induced by model selection. It is not known
how to account for the model selection uncertainty (in
this frequentist framework), but research on the matter
may lead to the needed methods.
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